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ABSTRACT

Deep dielectric charging and subsequent electrostatic discharge in composite materials
used on spacecraft have become greater concerns since composite materials are being used more
extensively as main structural components. Deep dielectric charging occurs when high energy
particles penetrate and deposit themselves in the insulating material of spacecraft components.
These deposited particles induce an electric field in the material, which causes the particles to
move and thus changes the electric field. The electric field continues to change until a steady
state is reached between the incoming particles from the space environment and the particles
moving away due to the electric field. An electrostatic discharge occurs when the electric field is
greater than the dielectric strength of the composite material. The goal of the current
investigation is to investigate deep dielectric charging in composite materials and ascertain what
modifications have to be made to the composite properties to alleviate any breakdown issues. A
1-D model was created. The model is given the space environment calculated using the
Environmental Workbench software, the composite material properties, and the electric field and
voltage boundary conditions. The output from the model is the charge density, electric field, and
voltage distributions as functions of the depth into the material and time. Analysis using the
model show that there should be no deep dielectric charging problem with conductive
composites such as carbon fiber / epoxy. With insulating materials such as glass fiber / epoxy,
Kevlar, and polymers, there is also no concern of deep dielectric charging problems with average
day-to-day particle fluxes. However, problems can arise during geomagnetic substorms and
solar particle events where particle flux levels increase by several orders of magnitude, and thus
increase the electric field in the material by several orders of magnitude. Therefore, the second
part of this investigation was an experimental attempt to measure the continuum electrical
properties of a carbon fiber / epoxy composite, and to create a composite with tailorable
conductivity without affecting its mechanical properties. The measurement of the conductivity
and dielectric strength of carbon fiber / epoxy composites showed that these properties are
surface layer dominated and difficult to measure. In the second experimental task, the
conductivity of a glass fiber / epoxy composite was increased by 3 orders of magnitude,
dielectric constant was increased approximately by a factor of 16, with minimal change to the
mechanical properties, by adding conductive carbon black to the epoxy.
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CHAPTER 1

INTRODUCTION

The charging of spacecraft, and its possible role in spacecraft anomalies due to
electrostatic discharges, has been a well known problem since the beginning of space
flight some thirty years ago. Charging is caused by energetic particles in the space
environment: electrons, protons and positively charged heavy ions. There are three types
of charging: entire vehicle charging, surface charging, and internal charging, also known
as deep dielectric charging. Entire vehicle charging is when the entire potential of the
spacecraft is raised. Surface charging is when only the potential of the spacecraft surface
is raised; however this may also occur locally where only part of the surface has its
potential raised due to geometric and material considerations. Deep dielectric charging is
like surface charging, except that the potential increase is not on the surface of the
spacecraft component but inside the material of the component. The last two types are a
concern for composite material structures, and the last type, deep dielectric charging, is

the focus of this research.

Most of the work done up until now on charging has been on surface charging. It
is caused by low energy electrons (less than 30-50 keV) which do not penetrate the

surface of the external structural material. These particles accumulate on the surface of
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the structure, and can lead to large differential charging between various parts of the
spacecraft. This charging can grow large enough to cause an electrostatic discharge,
which can lead to surface damage or spacecraft anomalies. These spacecraft anomalies
are caused by an induced internal current created by the discharge which can cause

electronics damage or cause erroneous commands to be processed by the spacecraft.

Deep dielectric charging occurs when high energy electrons or ions penetrate the
surface of, and deposit charge within, a insulating material. If the deposition of incoming
charged particles is greater than the charge leakage through the material, a large potential
difference can build up in the material and lead to an electrostatic discharge. The
discharge can occur within the material or from the interior of the material to one of its
surfaces. In either case a current path is created and the material is locally damaged
around the discharge site. There seems to be a correlation between these discharges and
periods of increased flux, as spacecraft anomalies have been observed when there are

more high energy particles in their local space environment.

The goals of this research are to develop a model for the analysis of deep
dielectric charging of insulating materials and composite materials, determine relevant
composite electrical properties, and to develop technology to alleviate charging problems
by changing the properties of the composite. A schematic of the model is shown in
Figure 1.1. The model was used to create a Fortran Code, The Composite Deep
Dielectric Charging Analyzer (CoDDCA). The code will have as inputs the space
environment and material properties. The space environment is given in terms of electron
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and proton fluxes versus energy; also geomagnetic substorms and solar particle events
may be specified. The material properties are divided up into mechanical, electrical, and
geometrical properties. The outputs from the code are given as functions of depth into
the material from the surface exposed to the space environment and time. They include

the charge density profile, the electric field profile, and the voltage profile.

The model was used to examine the effects of the various parameters input into
the model. These sensitivity studies revealed which parameters are important to deep
dielectric charging and which play minimal roles. The model was also used to examine
specific case study orbits, including orbits where there have been suspected incidents of

deep dielectric charging.

Composites are treated as a homogenous material in the above model. Therefore
composites on a micro-scale were modeled separately to determine the effects of their
inhomogeneity on the electric field. The different arrangements investigated include the
effects on the electric field due to a conductive fiber surrounded by an insulative matrix,
unlikely fiber arrangements which can create points of electric field intensification, and
the effects of an insulative surface layer of pure epoxy often found on top of conductive

carbon fiber / epoxy composites.

Experimental work was done to measure the continuum electrical properties of
composites. Carbon fiber / epoxy composites were made of various thicknesses, areas,
and layups and were used to investigate the through-thickness conductivity and dielectric
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strength. Values typical of previous work were measured, but the conductivity and
dielectric strength did not behave as continuum properties; they displayed non-classical

thickness and surface layer dependencies.

Another part of the experimental work was to create a conductivity tailorable
composite. This work was undertaken because the sensitivity studies showed that the
deep dielectric charging problem is dependent on conductivity, and that increasing
conductivity can have a significant effect in reducing the likelihood of an electrostatic
discharge. Therefore, a composite system was developed that had conductivity that could
be tailored without greatly affecting its mechanical properties. A glass fiber / epoxy
composite was used, the conductivity was increased by adding carbon black powder to
the epoxy. Laminates made from this composite were investigated to determine the
effects of the carbon black on the electrical and mechanical properties of the composite.
Control of electrical properties over large ranges (3 orders of magnitude) without

significant effects on mechanical properties, were achieved.

Previous work relevant to the current research is described in Chapter 2. This
includes a description of the space environment, analytical work on surface charging and
deep dielectric charging, and some general information on composites. The problem
statement and approach for the current research is presented in Chapter 3. The analytical
methodology which is used in the Composite Deep Dielectric Charging Analyzer
(CoDDCA) Code is developed in Chapter 4, as are micro-mechanical modeling of
composite electrical properties, and the data reduction equations used in the experimental
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analysis. The results of the code, including the parametric studies and the case studies are
presented and discussed in Chapter 5. Chapter 6 describes the test matrices used, the
procedures used to manufacture the composite laminates, and the experimental
procedures used to measure the mechanical and electrical properties of the composite
samples. The results of the experimental analysis are presented and discussed in Chapter
7. Finally, conclusions and recommendations for future work are presented in Chapter 8.
The appendices include a description of the CODDCA code and how to use it, as well as

the code output profiles and the experimental data.
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CHAPTER 2

BACKGROUND

This chapter presents background information on the space environment, charging
in the space environment, and composite materials. The space environment is broken up
into different sources of radiation: the Van Allen radiation belts, galactic cosmic rays,
solar particle events and geomagnetic substorms. The discussion of spacecraft charging
in the space environment includes both surface charging and deep dielectric charging.
Finally, a general description of composites and composite mechanics relevant to this

work are given.

2.1 RADIATION SOURCES

The main sources of energetic particles in the space environment are trapped
radiation of the Van Allen radiation belts, galactic cosmic rays consisting of
interplanetary protons and ionized heavy nuclei, and particles associated with solar
particle events and substorms."? The first two sources are fairly constant, while the third
is highly time dependent. The Van Allen belt radiation commonly leads to deep
dielectric charging, while radiation from the other sources is more likely to lead to single
event phenomena (SEP) in electronic components. This occurs because the belts contain

certain types of particle; the particle types determine the phenomena. The are two types
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of single event phenomena, hard and soft, depending on if the damage which occurs is
permanent or temporary. Soft single event phenomena are also known as single event
upsets (SEU). They result in such problems as a change in stored data or wrong
commands. Hard single event phenomena can result in permanent damage such as
burnout of power MOSFET’s, gate rupture, latchup, or the freezing of bits. The simplest
solution to single event phenomena is to use shielding. A major source of shielding is the
spacecraft structure. However, not all wires and components can be easily shielded, and

shielding can add significantly to the spacecraft mass.

The Sun’s activity occurs in an 11 year cycle know as the solar cycle. The
activity is quantified by the sunspot number (typically called the R value), the higher the
number the more active the Sun is. Solar minimum defines the beginning of the cycle
when the sunspot number is at its lowest. Solar maximum is when the Sun is most active
and the sunspot number is at its highest, as shown in Figure 2.1. Each cycle can have

maximums and minimums which vary by a factor of 4 from one cycle to the next.

2.1.1 Van Allen Radiation Belts

The Van Allen radiation belts consists primarily of energetic electrons and
protons, with a smaller percentage of heavy ions like oxygen (07). They are trapped by
the Earth’s magnetic field lines, and thus gyrate about the poles along the magnetic field
lines. They form toroidal belts around the Earth as shown in Figure 2.2. There are two
belts of high concentrations of particles, the inner belt and the outer belt. The inner belt

extends from approximately 1000 km to 6000 km in altitude, and is populated by very
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high energy (10’s of MeV) protons and high energy (1-10 MeV) electrons. The outer belt
extends from approximately 20,000 km to 32,000 km in altitude, and is populated
primarily by high energy electrons. For this reason, most spacecraft have orbits with
altitudes in the hundreds of kilometers, below the inner belt, and at geosynchronous orbit
(GEO) which is above the upper belt, at 35,782 km in altitude. However, the Van Allen
radiation belts continue beyond the high concentration belts out to an altitude of 60,000
km, with smaller amounts of particles. It should be noted that when the particles travel
near the poles, higher energy particles travel to lower altitudes producing the aurora
borealis and aurora austrailialis. Therefore, spacecraft in low altitude polar orbits are
subjected to the same density of high energy particles found in much higher equatorial

orbits.

2.1.2 Galactic Cosmic Rays

Galactic cosmic rays are energetic particles which originate outside our solar
system. They are believed to be ejected at high energies from nova and supernova
explosions, solar flares from other solar systems, or quasars. The rays consists mainly of
protons and Helium nuclei but may also consist of other heavier nuclei. Even though
they amount to only a small portion of the total dose a spacecraft receives, galactic
cosmic rays can lead to single event upset phenomena due to their high energies. The
Van Allen radiation belts shield the Earth from galactic cosmic rays, and thus spacecraft
in geosynchronous orbit are more susceptible to single event phenomena than those in

lower altitude orbits.
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2.1.3 Solar Particle Events

Solar particle events are similar to galactic cosmic rays but are ejected from our
Sun instead of from other solar systems’ suns. The Van Allen radiation belts also protect
Earth from solar particle events. These events are fairly infrequent, on average a few per
year. They consist mainly of protons which are ejected from the Sun during solar flares.
A solar flare is created by a highly concentrated explosive release of high energy
radiation. Events may last from a couple of hours to over a week. Typically, the effects
last 2 or 3 days. Solar particle events can be a significant contributor to the total dose
received by a spacecraft, in addition to creating single event phenomena. During a solar
particle event, the flux levels of protons in the Van Allen radiation belts increase by a
couple of orders of magnitude. The belts will retain high levels of particles in them until

the particles dissipate; typically these high levels last from several hours to several days.

2.1.4 Geomagnetic Substorms

A geomagnetic substorm occurs when an interplanetary disturbance, a giant
magnetic cloud containing hot gas from the Sun’s corona which is ejected from the Sun,
strikes the Earth’s magnetic field. The magnetic cloud collides with, and envelopes, the
Earth’s magnetic field, it compresses the magnetic field on the day side and stretches it
out on the night side, thus causing the geomagnetic substorm. This phenomena is
different from the solar particle event mentioned earlier. Substorms can last from several
hours to a couple of days, depending on the severity of the storm. There exists a
correlation between the geomagnetic activity index and the 11 year sunspot cycle. The

geomagnetic activity index has a peak which occurs during the declining phase of the
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sunspot cycle, and a secondary peak near solar maximum. Therefore, spacecraft can be
affected by substorms during and for several years after an extreme solar maximum.
Substorms consist of three distinct phases: growth, expansion, and recovery. The net
result of a substorm is to increase the electron flux seen by spacecraft by 2 to 3 orders of

magnitude.’

2.2 SURFACE CHARGING

During the 1970’s, 1980’s, and continuing into the 1990’s, protection techniques
have been developed which have basically taken care of the surface charging problem.*’
Several of these have been published as design guidelines, “Design Guidelines for
Assessing and Controlling Spacecraft Charging Effects™, “Space Environmental Effects
on Spacecraft: LEO Materials Selection Guide™, “On Orbit Charging: Current TWR
Design Requirements™'’, and MIL-STD 1541A"". One of the powerful engineering tools
used to analyze surface charging is NASA’s Charging Analyzer Program (NASCAP).*"
It analyzes the surface charging of a three dimensional spacecraft surface as a function of
time, for a given space environment, surface potentials, and material properties. By
calculating and locating the regions of high surface voltage gradients, the areas where
discharges are likely of occur are identified. Therefore, the materials or geometry of the

spacecraft in these regions can be varied to minimize the likelihood of an electrostatic

discharge.

The general approach used by all of the above mentioned guidelines, is to select
where possible the materials and conductive coating to be used on the surface of the
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spacecraft, as to minimize differential charging of spacecraft parts. Differential charging
is minimized when the voltage across the surface is as uniform as possible. If the above
mentioned selection is not possible, the approach is then to use alternatives such as
special filtering, cabling, or grounding. Once these have been selected, the charging
codes are run to simulate the charging effects and to analyze whether the chosen
configuration will work. However, since anomalies continue to occur on spacecraft, there
must be another source of electrostatic discharges, such as deep dielectric charging.

Therefore, an investigation of deep dielectric charging is required.

2.3 DEEP DIELECTRIC CHARGING

Vampola" showed that anomalies on spacecraft due to deep dielectric charging
are linked to geomagnetic substorms, where the number of high energy electrons
increases greatly. He was able to link the anomalies to deep dielectric charging by
providing evidence that not all anomalies could be linked to surface charging. At
geosynchronous orbit, deep dielectric charging is not affected by the spacecraft’s local
time, while surface charging is known to occur between pre-midnight (22:00) and dawn
(8:00), when the surface potentials become high enough for a discharge to occur.
Therefore, between pre-noon (10:00) and dusk (20:00) no discharges should be observed.
Since discharges do occur as shown in Figure 2.3, they must be due to deep dielectric

charging instead of surface charging.

Several spacecraft failures have been associated with electrostatic discharges
resulting from deep dielectric charging, including the $300 million Telesat Canada
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communications satellites Anik E1 and E2, Intelsat K, the European Space Agency (ESA)
telecommunications spacecraft Olympus, and recently AT&T’s Telstar 401. Both Aniks
failed a day apart in January 1994, when they suffered a temporary loss of altitude control
due to problems with their momentum wheels. It is believed that a discharge from deep
dielectric charging disabled key circuitry in the momentum wheel control systems. Anik
E1 was out of service for a few hours, but E2 was out for over 6 months and is now
operating with a reduced lifetime on orbit, due to failure of the redundant momentum
wheel control system. On the same day as the Anik El failure, Intelsat K’s momentum
wheel control circuitry experienced an operation anomaly which caused it to lose attitude
control. Control was reestablished when the backup circuitry was engaged. Analysis of
the radiation environment at the time of the failures indicates that the amount of high
energy electrons was greatly elevated. In August 1993, Olympus experienced a critical
anomaly which lead to its eventual failure and out-of-service status. Telstar 401
experienced a massive power failure in January 1997, rendering the spacecraft completely
inoperable. This occurred after an intense geomagnetic substorm. An interesting point to
note is that as Intelsat K, both Anik E’s, and Telstar 401 were all made by Lockheed

Martin, these anomalies may be due to a similar design feature.

Other spacecraft have experienced switchings or anomalies due to electrostatic
discharges resulting from deep dielectric charging, including Voyager 1 as it passed by
Jupiter in September 1977. There, it experienced a series of power on resets (POR).
Each time a reset was executed, the onboard clock was offset. This offset caused a

sequence of camera commands to be executed late and almost caused the loss of one of
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the objectives of the photographic mission. The European communications spacecraft
ECS-2 and ECS-4 experienced several automatic reconfiguration mode switchings in the
early 1990°s. Anomalies where also reported on the US Air Force Defense Support
Program (DSP) spacecraft, which affected the star-sensor shutter, and also on Meteosat-1.
These anomalies occurred on both spacecraft following periods of increased solar
activity. Most anomalies are suspected to be due to discharges occurring in insulation

around cables exposed to the outside of the spacecraft.

There have also been electrostatic discharges on the Combined Release and
Radiation Effects Spacecraft (CRRES). CRRES was sent up to measure outer-zone

1. The internal discharge

electrons and internal discharges during 1990 and 199
experiment (IDM) exposed 16 samples of standard insulating materials with electrodes to
the Earth’s radiation environment. The samples were composed of two different
geometries, cables and printed circuit boards (PCB), and with various connections;
grounding, floating, or semi-conducting elements. The samples were shielded with a thin
aluminum foil, thus stopping all electrons below 150 keV. The orbit used was a high
elliptical transfer orbit so that the spacecraft was exposed to all the magnetosphere
environment. Over the 14 months of the flight, approximately 4300 spontaneous
discharges were recorded from the samples, thus proving that deep dielectric charging did
exist and that it is of concern. The results are of the form of the flux above a certain

energy level on the days that discharges were recorded. It should also be noted that while

some spacecraft have been affected by deep dielectric charging, other spacecraft of
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similar design and in operation at the same time have not been affected. This

demonstrates that more research into the issue of deep dielectric charging is required.

A general overview of deep dielectric charging was done by Garrett and
Whittlesey'’, and Soubeyran'®, who also gives some basic design guidelines to follow to
minimize deep dielectric charging. Some early modeling of deep dielectric charging was
done by Berkley" and Frederickson”’. Berkley analyzed the charging of thin polymer
films, using multiple electron energy ranges. The model can incorporate both open and
short circuit boundary conditions, and can include non-linear transport terms, as well as
time-varying radiation induced conductivity. The electron-irradiation parameters, the
radiation induced conductivity and the electron deposition profile, are computed using a
single-scattering Monte Carlo model of the polymer. The time-dependent charge-
transport equations are solved by direct discretization of the partial differential equations.
With his code, Berkley was able to study the effects of a time-varying electron beam,
conductivity, and the influence of various boundary conditions, using both linear and
non-linear transport. The results showed that charging reaches a steady-state quickly, and
that the model has excellent qualitative and in many cases quantitative agreement with

the experiments he performed using an electron beam to irradiate samples.

Frederickson used basically the same model as Berkley, but improved the
calculations to include the dose effects of secondary X-rays and bremsstrahlung radiation,
and to include the effect of the electric field on the trajectories of the incident penetrating
electrons. A Monte Carlo simulation is used for the electron trajectories of the mono-
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energetic electron beam, and a computerized iteration technique is used for the motion of
the space charge and the induced electric fields. Two different boundary conditions are
used, both the front and rear surfaces are held at zero potential (grounded), and the front
surface allowed to float free. The first boundary condition represents the spacecraft
surface in full sun which allows solar photoemission to keep the surface at zero potential.
The second represents the spacecraft surface in full shade where without solar
photoemission the potential can vary. It was found that the bremsstrahlung and x-rays
produced very little effect, and that the space charge electric fields do not significantly
alter the trajectories of the incident electrons. Both Berkley’s and Frederickson’s models
work well, but do not simulate the space environment, as they work only for an electron

beam of mono-energetic electrons.

Recently, Soubeyran” of Matra Marconi Space developed ESA-DDC™
(European Space Agency Deep Dielectric Charging), a numerical tool to analyze deep
dielectric charging in the space environment, for the European Space Agency. The
electron and proton transport is calculated gsing Monte Carlo transport codes to track the
path followed by the electrons and protons. This provides the deposited dose and charge
within the material for a given energy distribution or mono-energetic particles. Ampere’s
equation with Ohm’s law are transformed into equivalent electrical circuits and sent to a
circuit analyzer. The circuit analyzer calculates the induced conductivity, current,
electrical potential, and electric field. The code is restricted to 1-D geometries with the
upper surface exposed to the space environment and the lower surface grounded to the
structure potential. The material between the surfaces can be made up of multiple layers
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of materials, both conducting and insulating. Subsequently, the code has been modified

for the analysis of 2-D geometries.

Another method, which was proposed by Whittlesey®, is to manufacture the
spacecraft and before it is launched, to test it to see if electrostatic discharges occur.
Testing is performed using the MIL-STD 1541 sparking device, which simulates the
effects of space electrostatic discharges. Thus if discharges occur modification of the
spacecraft is required after the spacecraft is designed and assembled. This technique can
be effectively used to double-check spacecraft which have been designed to have minimal

electrostatic discharges. but is grossly inefficient for finding and fixing problems.

Most previous work on deep dielectric charging has dealt with the charging of
spacecraft components such as wire insulation and printed circuit boards, where the
electrostatic discharges can lead to anomalies in spacecraft operation. However, with the
increasing use of composite materials, which can be dielectrics, deep dielectric charging

is becoming a problem with the structure of spacecraft.

24 COMPOSITES

Composites are starting to replace metals, such as aluminum, as the structure of
spacecraft, due primarily to their higher stiffness-to-weight ratios. Composites are made
up of multiple layers or plies, which are stacked at various angles to get the desired
material properties. These plies are in turn made up of fibers and matrix material which
surrounds the fiber. The dominant fibers used are carbon (sometimes referred to as
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graphite), glass, and Kevlar. The dominant matrix materials for space applications are

epoxies, cyanates, and poly-ether-ether-keytones (PEEK).

By varying the angles of the plies and the stacking sequence of the plies (refer to
Figure 2.4), one can tailor the properties of the laminate or composite structure. The
reason changing the ply angle has an effect on the material properties is that the plies are
anisotropic. The material properties in the longitudinal direction can be very different
from the properties in the transverse and through-thickness directions (refer to Figure
2.5). The ply angle is defined as the angle between the geometric coordinate system and
the ply coordinate system. The range of angles is from +90° to -90°. The geometric
coordinate system is arbitrarily assigned to a structural direction, for example the length
of a solar panel array, and the ply coordinate system is aligned with the fiber direction, as
shown in Figures 2.4 and 2.5. Therefore a 0° ply will have its longitudinal properties
aligned with the principal direction of the structure. The laminate properties are based on
the ply properties and the ply angles, and can be calculated using Classical Laminated

Plate Theory (CLPT). For more information refer to Jones®’ and Tsai®.

In modeling composites in general, and specifically for the charging problem, the
homogenized equivalent properties for the composite ply are used instead of the
individual properties of the fibers and matrix. This is an acceptable simplification for a
first order solution of the problem, as the thickness of the material is much greater than
the diameter of the fibers for most material systems of interest. To determine the ply
properties, one has to combine the fiber properties with the matrix properties. The ply
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Figure 2.4:  Typical composite in the geometric coordinate system
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properties are dependent on the volume fraction of fiber used in the composite material,
the matrix properties, and the fiber properties. There are many models which are used to
determine the ply properties, all of which have modeling limitations. Typically the
simplest models are those which are used to determine ply properties in the longitudinal
direction. The most basic models are the “rule of mixtures” (ROM) and the “inverse rule
of mixtures” (IROM), which result in relations similar to the equations for resistors or
springs in series and in parallel. These models are independent of the details of the fiber
and matrix geometry. More complicated models are required for the more difficult to
model properties, such as the transverse and through-thickness directions properties.
These models are can be based on experimental or analytical work, and therefore different
researches can develop greatly different models for the same property. More specific

details are given in section 4.5.

However, the details of the fiber and matrix can matter, especially in cases where
the properties of the fiber and matrix differ radically. This is the case with electrical
properties. Geometry can be important, as in the case of a low resistance percolation
path, as shown in Figure 2.6. Another case is the insulative epoxy rich surface layer on
composite laminates, as shown in Figure 2.7. These details will be examined on a case

by case basis in section 4.4.

The materials used in this research are carbon fiber/epoxy, glass fiber/epoxy, and

Kapton. The epoxy, glass fibers, and Kapton are insulators, while the carbon fibers are

conductors. The electrical properties of these materials are tabulated in Table 2.1.7
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Table 2.1: Material properties of materials used in this research

Material DenSitsy Conductivity | Dielectric Dielectric
(kg/m”) (1/Q-m) Constant | Strength (MV/m)
Carbon Fibers 1384 --2200] 2.0x 10* - 10° | - 0.0032 -- 0.0044
Epoxy 1052--2187| 10°--10° |[278--52] -
Glass/Epoxy 1550 -- 2076 <10 42--568| 17.7--21.7
Carbon/Epoxy Long. [ 1577 -- 1700| 374--47,600 [ - | -
Carbon/Epoxy Trans. | 1577 -- 1700 1.5--2000 | - | =eee-
Carbon/Epoxy Thick.| 1577 -- 1700  0.1--106 | === | ===
Kapton 1420 - 1670 7x 10" - 10" 2.7--3.5 154 -- 303
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CHAPTER 3

PROBLEM STATEMENT AND APPROACH

3.1 PROBLEM STATEMENT

In this work, we will develop a model of the deep dielectric charging of
composites such that, given the orbit data (apogee height, perigee height, inclination, and
solar cycle), the composite electrical properties (conductivity, dielectric constant, and
dielectric strength), the density, and the thickness, we can calculate the distribution of
charge density, electric field, and voltage with respect to position through the thickness of
the composite. We will make suggestions to reduce the probability of electrostatic
discharges from occurring due to deep dielectric charging. We will also experimentally
measure the continuum electrical properties of carbon fiber / epoxy composites. Finally,
a composite material system will be developed with conductivity properties that can be

tailored without affecting its mechanical properties.

3.2 APPROACH

Previous literature on spacecraft charging is used to develop an understanding of
the space environment and the charging phenomena. This understanding is used to
develop the analytical models. The analysis has three fundamental goals. The analysis is

used to identify key parameters associated with deep dielectric charging and the resulting
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electrostatic discharges, as well as sensitivity of the analysis to these parameters.
Secondly, the analysis provides insight into the interaction of the fiber and matrix on a
micro-scale. This is required since in the deep dielectric charging model the composite is
treated as a homogeneous material, when in fact it is made up of fibers surrounded by
matrix. The analysis will also be used to examine specific orbits as case studies, where

spacecraft are suspected to have suffered problems due to deep dielectric charging.

The purpose of the experimental program is gain an insight into the parameters
which control the through-thickness electrical properties of composites. The critical
properties to be investigated are determined from the analytical program; they include the
conductivity and the dielectric strength. These properties are initially assumed to be
continuum properties. The second purpose on the experimental program is to investigate
a conductivity tailorable composite. This is done to aid at reducing the chance of
electrostatic discharges occurring, since increasing the conductivity decreases the electric
field. Therefore, by increasing the conductivity, the likelihood of an electrostatic
discharge is reduced. This material system is to have tailorable electrical properties

without changing the mechanical properties significantly.

3.3 ANALYTICAL TASKS

The analysis is made up of two parts, the deep dielectric charging analytical
model and the modeling of the fiber/matrix micro-scale effects. The deep dielectric
charging model comprises several parts. First comes the acquisition of the environmental
data from the Environmental Workbench software. In the actual charging model, the
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composite is treated as a homogenous material and the fiber/matrix micro-scale effects
are studied separately. The model includes the effects of the space environment on the
conductivity of the composite, including radiation induced conductivity and high field
conductivity. The model is used to perform sensitivity studies on various parameters to
determine which ones affect the likelihood of discharges occurring. These results gave
direction to the experimental program, as to which properties should be examined. The
model is also used to evaluate the likelihood of discharges occurring on various case

study orbits.

The composite is modeled as a homogenous material in the charging model, when
in actuality it can be highly anisotropic and locally inhomogeneous. It is made up of
fibers surrounded by matrix; therefore various effects of the fiber/matrix micro-scale are
modeled. These include the effects of a conductive fiber surrounded by an insulating
matrix, unlikely fiber arrangements, and the pure epoxy surface layer inherent on

composites.

3.4 EXPERIMENTAL TASKS

There are two major experimental tasks. The first task is to get good
measurements of through-thickness conductivity and dielectric strength of carbon fiber /
epoxy composites. The effects of laminate thickness, surface area, and ply stacking
sequence are investigated. The second task is create a conductivity tailorable composite.
This task will involve adding conductive carbon black powder to a glass fiber / epoxy
composite to control the conductivity. The material properties, both electrical and
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mechanical, are measured and plotted against percentage of carbon black to create

preliminary design charts.
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CHAPTER 4

THEORY

This chapter presents the theory used in the development of the composite deep
dielectric charging analyzer. The geometry being analyzed is presented first, followed by
the basic electrostatic equations used. The development of the deep dielectric charging
model is then presented. Additional models used to model micromechanical details and
composite electrical micromechanics are described. Finally, the equations used to reduce

the experimental data are presented.

4.1 MODEL GEOMETRY

The geometry of the composite is a 3-D plate with longitudinal, transverse, and
through-thickness material properties, as shown in Figures 2.4 and 2.5. However, for the
deep dielectric charging model the composite is modeled as a 1-D plate in the through-
thickness direction with homogenized material properties, as shown in Figure 4.1. The
incoming radiation from the space environment is assumed to be perpendicular to the
surface, and uniform across the surface. The front surface of the composite is the surface
that is exposed to the space environment, and the back surface is the surface that faces the
inside of the spacecraft. The depth (x) is defined as starting at the front surface and

ending at the back surface.
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Figure 4.1:  Geometry used in the CoODDCA model
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4.2 BASIC ELECTROSTATIC EQUATIONS

The equations used in modeling deep dielectric charging are derived in this
section. The continuity equation’ relates the current density to the charge density. The
charge density includes both the incoming charge density rate from the space
environment and the charge density in the material.

vi=-2 (1
- ot pin )

where J is the current density vector (A/m’), t is the time (s), p